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The Monte Carlo simulation of carrier transport in semiconductors requires the generation 
of free-flight times corresponding to known probability densities. This paper reviews the 
methods which have been proposed to generate such random variables. It is shown that one of 
the fastest available algorithms, the iterative-gamma method, does not give the correct dis- 
tribution. Two new methods are proposed: the constant-time method and polynomial integral 
evaluation. The former is similar to iterative gamma, but modified to produce more reliable 
results. It is also very fast. Polynomial integral evaluation can be used where the scattering 
rates are stored as polynomials rather than in the more usual tabular form. This may be useful 
when working in restricted memory. 0 1986 Academic Press, Inc. 

1. IN~~DUCTI~N 

(a) The Monte Carlo Method 

Electron transport phenomena in solids may be studied by a Monte Carlo 
procedure in which the path of a single particle is followed by computer simulation. 
The electron is considered to move quasi-classically during periods of free flight 
under the influence of an applied field. The free flights are interspersed with scatter- 
ing events which represent the interaction of the particle with lattice vibrations and 
impurities. The free-flight length and outcome of a scattering event are selected at 
random from known probability distributions. Transport properties of the material 
under investigation are found from the time average of the behaviour of the 
individual particle. 

The state of an electron is specified by its wavevector, k, and by its real-space 
position vector, r. The wavevector is related to the momentum, p, and the energy, E, 
by 

p=hk (1.1) 

E( 1 + a&) = h2k2/2m (1.2) 
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where c1 is the non-parabolicity factor, a property of the material, A is Planck’s con- 
stant divided by 275 and m is the effective mass of an electron in the material. The 
motion of the particle in an electric field, E, is taken to be Newtonian, so that the 
time variation of k is given by 

k(t)=k,+qE(t)t/h (1.3) 

where q is the charge on the particle and k, is the wavevector at time t = 0. The 
electron flies freely in the field until it interacts with the lattice. The probability den- 
sity for the duration of a free flight is 

P(t)= l[k(t)] exp -[‘1[k(r’)] dt’ 
0 1 (1.4) 

where l(k) is the total scattering rate for wavevector k 

A(k)= f l,(k) 
i= I 

(1.5) 

where l,(k) is the rate due to the ith process and N is the number of processes. The 
first term in (1.4), L[k(t)], is the probability that a scatter occurs at time t. The 
second term is the probability that the particle survives the interval (0, t) without 
suffering a scatter. 

When an interaction takes place one of the possible scattering mechanisms is 
chosen to occur. The choice is made such that the probability of each mechanism 
being picked is proportional to its scattering rate. The wavevector is then modified 
according to the physical nature of the process associated with the mechanism 
chosen. This gives the final state of the electron, 

The sequence of free flight followed by scatter is repeated many times until suf- 
ficient information has been accumulated to allow the calculation of meaningful 
averages. It is then possible to determine the time-average values for transport 
properties such as the energy, drift velocity, and diffusion coefficients. Alternatively, 
the simulation of a number of electrons may be carried out simultaneously and the 
time dependence of their behaviour derived from an ensemble average. 

Price [1] gives a review of the Monte Carlo technique as applied to transport in 
semiconductors. Boardman [2] gives a more practical description and includes a 
complete program. 

(b) Free-Flight Generation 

The problem to be investigated here is that of finding a value for the random 
free-flight time subject to the probability density of (1.4). The starting point for this 
calculation will be a pseudorandom number, r, chosen from a uniform distribution 
in the range (0, 1). Routines for generating such numbers with suitable statistical 
properties are readily available for most computer systems. 
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The probability density of flight times, P(t), may be related to that of the 
uniformly distributed random number by 

P(r) dr = P(t) dt. 

Integration of this using P(r) = 1 gives 

r = 
I 

’ P( t’) dt’. 
0 

Substituting for P(t) from (1.4) and carrying out the integration produces 

1 
and hence 

-In r= ’ A[k(t’)] dt’. 
s 0 

(1.6) 

(1.7) 

(1.8) 

(1.9) 

Here (1 - r) has been replaced by r since they are random variables with the same 
probability distribution. 

Equation (1.9) is of fundamental importance. It expresses the relationship 
between the known pseudorandom number, r, and the required flight time, t. For 
any particular theoretical model of a semiconductor the form of the total-scattering- 
rate function, I(k), is known. Thus, in principle, it should be possible to carry out 
the integration and invert the result to find t. However, the integral cannot be 
evaluated analytically for most types of scattering rates which are of interest. Even 
in those simple cases where the integral can be found, the inversion of the resulting 
expression is only possible numerically. Since a direct approach is either impossible 
or, at best, would be cumbersome and time-consuming, other more subtle methods 
must be used. 

One of the most fruitful concepts which has been brought to bear on the problem 
is that of “self-scattering,” first introduced by Rees [3]. The self-scattering 
mechanism is a virtual process which leaves the state of an electron unchanged. 
Indeed, it must have this behaviour because all of the physically significant “real- 
scattering” processes have already been included. Since the new process can have no 
effect on the electron distribution its associated scattering rate may be chosen to 
have an arbitrary value, say, I,(k). The new total scattering rate is then 

T(k) = I,(k) + A(k). (1.10) 

The introduction of self-scattering thus allows the insertion of an arbitrary function 
into the integral of (1.9) (subject to the constraint that, since it represents a scatter- 
ing rate, A,(k) is greater than or equal to zero). Clearly, such a function may be 
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chosen so that substituting the new total scattering rate, T(k), into (1.9) results in 
an integral which is easy to evaluate. 

It is illuminating to follow Fawcett et al. [4] and consider what effect the self- 
scattering has on the probability density of (1.4). The probability that an electron 
has a free flight of length t terminated by a real scatter is . 

P(t)=i(I)exp[ -fir(tf)dt’] (1.11) 

where, for brevity, the fact that I and r are related to t via k has been omitted. This 
expression assumes that no self-scatters took place in the interval (0, t). If one self- 
scatter had occurred in that interval the corresponding probability would be 

P(t) = A(t) j-i dt’ [exp[ -ldrclr~)dr.‘].i,(t~) 

xexp [ -1: r(f) dt”]]. (1.12) 

Here the term &(t’) is the probability of self-scatter at time t’. The first exponential 
term is the probability of an uninterrupted flight from time 0 to t’ and the second is 
the similar probability for the interval (t’, t). These three terms are integrated over 
all values of t’ to give the probability of a flight length exceeding t which includes 
only one self-scatter. Expressions similar to (1.12) may be found for flights which 
include two or more self-scatters before the real scatter at t. 

When added these expressions give the total probability of a free flight ter- 
minated by a real scatter at t. Extracting the common factors gives 

P(t)=l(t)exp[ -[ir(tf)dt’] 

x 

+ ib’ dt’ jd’ dt” A,( t”) f ” dtc3) A,,( tc3)) + . . j. 

Using the fact that 

(1.13) 

5,‘“‘~;dtJL.j-“‘-” dt’“‘f( t’)f( t”) . . f( t’“‘) 

=-$[~~fWr’] (1.14) 
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the sum in the last factor can be seen to reduce to the series expansion of 
exp[J& &(f’) dt’]. Thus we find 

(1.15) 

which is the original probability density of Eq. (1.4). 
The above analysis confirms mathematically what was physically obvious: the 

introduction of a virtual self-scattering process does not alter the probability dis- 
tribution of free-flight times. However, the proof also highlights an important fact 
about the nature of the function n,(t). The step in which (1.14) was applied to 
(1.13) relies on the fact that n,(t) has the same functional form regardless of the 
presence of one or more self-scatters. The self-scattering-rate function, n,(t), must 
therefore remain unchanged by the occurrence of a self-scatter. On the other hand, 
once a real scatter has occured the particular form of n,(t) has served its purpose 
and some other function can be used for subsequent flight choices. 

To summarise, we may introduce a fictitious scattering process which changes the 
total scattering rate from L(t) to r(t), where r has the following properties: 

(ii) r(t) may take any arbitrary functional form (subject to (i)), and this 
form may be changed after each real scatter. 

2. REPRESENTATION OF SCATTERING RATES 

Before describing the methods used in the solution of Eq. (1.9), it is of value to 
consider the ways in which the total scattering rate, I(k), can be represented. Any 
procedure for finding free-flight times will have to, at some stage, evaluate I(k). 
This is true even if a method is used which conceals L(k) in the total rate including 
self-scattering, r( t ). 

When the Monte Carlo problem is first formulated the individual scattering rates 
which sum to give I(k) are known explicitly from the theoretical models for the 
mechanisms to be included. These explicit formulae are rather involved. Many of 
them require the extraction of a square root and would take some time to calculate. 
Since the scattering rate must be calculated many times it is better to find a faster 
method. 

For the scattering mechanisms considered in this work it is found that I(k) 
depends only on the magnitude of the wavevector. It is therefore possible to con- 
struct a table of scattering rate as a function of k. The explicit formulae then only 
have to be evaluated once, during the initialisation of the table. Whenever a scatter- 
ing rate is required subsequently it can be obtained by looking it up in the table-a 
very fast process. A reasonable compromise between an accurate representation of 
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I(k) and the minimisation of storage is achieved with a table containing 500 entries. 
In addition to the total scattering rate, L(k), it is also necessary to store the scatter- 
ing rates for each of the individual processes for use in determining which of them 
should be chosen to terminate a free flight. Since sophisticated models for semicon- 
ductors can include ten or more different scattering mechanisms, it can be seen that 
the storage requirement for the tables starts to become significant-especially if the 
simulation is to be carried out on a small computer with a limited amount of 
memory. 

Another possibility is to represent I(k) by an approximating function, such as a 
polynomial, which is more easily evaluated than the original formulae. It is found in 
practice that one polynomial will not provide a good approximation over the entire 
range of wavevectors which is of physical interest. This is due to the presence of a 
number of scattering mechanisms with discontinuities in their derivatives which 
cannot be followed accurately by the continuous polynomials. This problem may be 
dealt with by splitting the range of k at each of these discontinuities and using a dif- 
ferent polynomial for each sub-range. 

Each polynomial has the form 

i(k) = f a&-’ + a,/k 
i=l 

(2.1) 

where the ai are coefficients derived at initialisation. The term in l/k is included to 
represent ionised-impurity scattering, which has a scattering rate of the form 

1 2as 
&,(k)=a, i+k . [ 1 (2.2) 

The first part of this expression appears explicitly in Eq. (2.1) while the second term 
can be included in the polynomial along with the other mechanisms. The separation 
of the term in l/k increases the accuracy of the approximation by reducing the 
amount of variation which has to be represented by the polynomial, particularly at 
low values of k. An alternative way of achieving the same result is to increase the 
number of polynomials used so that the change in l(k) over each subrange is 
smaller. 

A quintic polynomial was used in the investigations described here because 
theory indicated that this would produce an error of less than one part in 106. This 
is about the same magnitude as the error due to the truncation of a variable when it 
is stored as a 32-bit floating-point number in a computer. Although the theory can- 
not be applied to the case where the derivative is discontinuous, practical 
experience has shown that errors of 10e4% are typical over much of the range, with 
no error exceeding 1%. 

Each of the methods described has its advantages and disadvantages. Direct 
evaluation is slow, but only requires one or two words of memory per scattering 
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mechanism. Tabulation is very fast, but consumes 500 words of memory for each 
process. Between these two extremes is polynomial approximation, which is 
moderately fast and only needs about 50 words of memory per process. The choice 
of which method to use depends on the computer on which the simulation is to run. 
In some cases a hybrid procedure could be advantageous, in which table look-up is 
used for finding the total rate while the rates for the individual processes are found 
from the explicit formulae. 

3. FREE-FLIGHT GENERATION ALGORITHMS 

There is one special case in which Eq. (1.9) can be solved exactly, no matter what 
the scattering rate function- that is the case where the electric field is zero. A zero 
field means that the wavevector remains constant, at k(O), and the scattering rate is 
fixed at n[k(O)]. The flight time can then be obtained immediately: 

-In r 
l=xfiqjj. 

(3.1) 

This special case is important because some of the methods to be described below 
will not work for a zero electric field. 

(a) Constant Gamma 

The constant-gamma method is the simplest application of the concept of self- 
scattering. The self-scattering rate L,(k) is chosen to give a new total rate T(k) 
which has a constant value. When this is substituted in Eq. (1.9) the free-flight time 
is found to be 

t= (-In r)/T. (3.2) 

h:tering 

k 

FIG. 1. Typical scattering rate curve, showing constant gamma value. 



184 RONALD M. YORSTON 

Thus, by introducing a fictitious process, the evaluation of a very complicated 
integral is reduced to a simple algebraic expression. 

The difficulty with this procedure lies in the condition that ra L(k). If A(k) is 
fairly constant and bounded for all values of k there is no problem. However, Fig. 1 
shows a typical scattering-rate curve for a model of silicon. Because of the l/k 
dependence of ionised-impurity scattering it is impossible to find a value for f 
which will satisfy the condition for all k. Fortunately it is known that very large and 
very small values of k are unlikely to occur, so it is possible to set limits on the 
allowed range of k which contain all but a very few electrons. A value for r can 
then be found which satisfies the condition within the restricted interval. The chan- 
ces of an electron leaving that interval and suffering an unphysical negative self- 
scattering rate are assumed to be sufficiently small that the effect of its behaviour on 
the final results can be neglected. 

The disadvantage of this approach is that the required value for r is rather large. 
Over much of the possible range of wavevectors, and particularly the most occupied 
range, the self-scattering rate is very high compared with real scattering. Although 
self-scatters have no physical effect on the simulated electrons they do consume 
some computer time which can accumulate to become significant. 

(b) Piecewise-Constant Gamma 

As its name suggests, this method is a development of constant gamma (Borsari 
and Jacoboni [S]). Instead of using a single value of r for all wavevectors the 
function T(k) is piecewise constant (Fig. 2). This allows a better approximation to 
the real scattering rate and a reduction in the number of self-scatters. The gain is 
slightly offset by the more complicated calculation needed to find the free-flight 
time. 

The evaluation of Eq. (1.9) for a piecewise constant T(k) must be carried out as a 
series of steps over each of which r is constant. Suppose that the first discontinuity 
in r(t) occurs at time t, , with r(t) = r, for 0 < t 6 t, . Integrating ri from 0 to t, 
gives the result r, t,. Two cases now arise depending on the random value on the 
left-hand side of the equation. 

Scattering 
rate 

- -T(k) 

h(k) 

k 

FIG. 2. Piecewise-constant gamma. 
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(i) r, t, 2 -In r. In this case putting A(k) = T(k) in Eq. (1.9) gives 

-In r= ’ f[k(t’)] dt’ 
I 0 

which has a solution for some value of t less than or equal to t,, given by 

t=(-lnr)/T,. 

(ii) ri t, < -In r. In this case the solution must be greater than t, : 

-lnr= I ” I-I dt’ + j’ r(t’) dt’ 
0 fl 

or, putting t” = t’ - t, , 

(-lnr--T,t,)=~~‘~“‘r(t”)df”. 

185 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

This has the same form as Eq. (1.9) and may be solved for (t - t,) using the 
procedure described above, repeatedly if necessary. The evaluation will always ter- 
minate at some stage when the condition corresponding to case (i) is satisfied. 

The above procedure requires that we know the times ti at which r changes 
value. However, the discontinuities in r occur at fixed values of wavevector, not 
time. From (1.3) the variation of k with time is 

k= [k;, + [k,,, +$ty]1’2 (3.7) 

where the subscripts I I and I denote, respectively, the components of wavevector 
parallel and perpendicular to the electric field, which has magnitude E. This 
function has a minimum of kol at time 

tmin = -fikoil /qE. (3.8) 

The time corresponding to k;, the wavevector of the ith discontinuity in r during 
the course of the flight, is 

r,=$ [+(k;-k;,)“*-ko,,]. (3.9) 

The square-root term is positive if k decreases from ki-, to ki and negative if k 
increases or passes through its minimum. 

(c) Iterative Gamma 

The iterative-gamma method was introduced to reduce still further the number of 
self-scatters (Warriner [6], Hackney and Eastwood [7]). This is achieved by 
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choosing a new value for f at each free flight. The value can be tailored to the real- 
scattering rate currently experienced by the particle. 

The procedure is the following: for a particle with initial wavevector k, the first 
value of r is taken to be r, = A(k,). Using the normal constant-gamma technique 
gives a corresponding flight time 

-In r 
t, =- 

r, . 
(3.10) 

The maximum real-scattering rate during a free flight of length t, is found, LP,,. If 
I-, > qax the time is accepted as being valid, but if the real-scattering rate exceeds 
I-r the situation is unphysical. We therefore calculate a new value of constant r, 

r=d, (3.11) 

where m is a multiplying factor greater than unity. A typical value is m = 1.1. This 
new value of r is used to find a flight time, t,. The maximum real-scattering rate 
over the new flight is again compared with r. The iterative process is repeated until 
a value of r is found which is greater than the maximum real-scattering rate. Since 
r is increased only in small steps the self-scattering rate can never form a large 
proportion of the total (unless A(t) is decreasing). 

Although this procedure is superficially attractive a more detailed analysis reveals 
that under certain circumstances the flight times to not have the correct dis- 
tribution. The graph of Fig. 3 shows the form of r(t) for a particular real-scattering 
function. For certain time ranges r is a double-valued function, with the high or 
low branch being chosen depending on the value of the random number. To see 
how this comes about consider the value of (-In r) which results in a free-flight 
time, t,, just greater than t’ (the time where n(t) = ml(k,) = r&): 

-1nr 
t, =- 

md, 

t’ +, t” +a, 
Tii iii 

(3.12) 

FIG. 3. Time variation of scattering rate and gamma, using the iterative-gamma method. 
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FIG. 4. Distribution of free-flight times for the scattering rate of (3.15). Continuous curve is the 
theoretical result; histogram depicts the Monte Carlo results using iterative gamma. 

Since ,I(t,) > m& the iterative-gamma method requires that a new time be chosen 
using f = m2&: 

-In r 
t, =- 

m21, ’ 
(3.13) 

However, this same value of time can also arise from a different random number 
choice, r’, where ( -In r’) = ( -In r)/m: 

&-lnr’) (-lnr) -= 
ml0 m2Ao ’ 

(3.14) 

The double-valued nature of f(t) displayed here makes it difficult to apply the 
argument presented in Section l(b) to show that the presence of self-scatters does 
not affect the distribution of free-flight times. An experimental approach has 
therefore been adopted. 

The graph of Fig. 4 shows the result of an experiment in which iterative gamma 
was used to find the distribution of free-flight times for a particularly simple scatter- 
ing rate: 

f(t)=a+bt (3.15) 

where a and b are constants. The continuous curve shows the expected theoretical 
distribution while the histogram shows that produced by the iterative-gamma 
method. For short flights there is good agreement, but over the range t’/m to t’, 
where f is double valued, there is a peak in the histogram as each time is generated 
by two possible random numbers. Similar effects are seen for other time valuks at 
which f(t) is double valued. This experiment shows that the iterative-gamma 
method does not generate the correct distribution of free-flight times, 
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TABLE I 

Percentage of Valid Flight Times Produced by the Iterative- 
Gamma Method for a Simple Model of Silicon 

Field (MVjm) 

Multiplier 0.5 1.0 2.0 4.0 6.0 

1.05 98.2 95.1 93.8 91.9 90.0 
1.1 99.6 98.7 96.9 95.0 94.9 
1.2 99.8 99.7 98.4 96.5 97.9 
1.3 99.8 99.8 98.8 96.9 97.2 

Despite producing a free-flight distribution which is incorrect in places, iterative 
gamma is still a useful and fast method. It has been used for a number of years and 
has always produced results which agree well with the actual properties of semicon- 
ductors. As pointed out above, the flight distribution below f/m is always correct. 
Table I shows the percentage of flights which satisfy this condition for a simple 
model of silicon. It is clear from this that only a small number of flights are chosen 
from the wrong distribution. Using larger values of the multiplier improves the 
situation by increasing the time t’ where A(t’) = m&. This does increase the number 
of self-scatters, though, and slows down the calculation. 

(d) Constant Time 

Like iterative gamma the constant-time method was designed to reduce the num- 
ber of self-scatters by producing a function r(t) which is a close fit to the local real- 
scattering rate. The procedure used is similar to that of piecewise-constant gamma, 
where the integration of the right-hand side of (3.3) is carried out in a series of 
steps. In this case, though, the times at which the discontinuities in r(t) occur are 
always multiples of a fixed time increment, tint. Thus the first integration is from 0 

0 ht: *+inc 3inc 

FIG. 5. Time variation of scattering rate and gamma, using the constant-time method. 
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to tinc, the second from tint to 2ti,,, etc. The constant r value used in each case is 
equal to the maximum real-scattering rate over the range of time values being con- 
sidered. Figure 5 shows the form of r(t) which results from this procedure. 

When a free flight ends in a self-scatter special treatment is necessary. If a flight 
terminates with a self-scatter at time t, between (n - 1) tint and ntinc, the first 
integration used to determine the next flight must extend from I to ntinc. Also, the 
value of r used for this integration must be the same as that used for the previous 
one, i.e., the maximum value of the real-scattering rate over the time interval from 
(n- 1) fine t0 ntinc. Subsequent integrations can proceed in steps of tint as before. 
These restrictions are necessary to ensure that condition (ii) of Section l(b) is 
satisfied, i.e., that the functional form of r(t) is not affected by the self-scatter. After 
a real scatter the form of I(t) can change and the first integration can be over a 
period of length t,,,. 

(e) Numerical Integral Evaluation 

The methods considered so far have all avoided a direct evaluation of the integral 
in (1.9) by the introduction of self-scattering. Although it may not be possible to 
perform the required integration analytically it can certainly be done numerically. 
Replacing the integral with a numerical approximation using the trapezium rule 
gives 

-lnr=C IZ(ki+,)+A(ki)dt, 

I 2 I’ (3.16) 

The procedure works most effectively if J(k) is stored in the form of a table. The 
ordinates of the integral are then those values of time corresponding to the 
tabulated points. The interval between ordinates, Ati, is given by a formula similar 
to (1.9): 

(3.17) 

where, as before, the sign of the square root depends on the way in which k varies 
with time. The sum in Eq. (3.16) is evaluated term by term until it exceeds the ran- 
dom number on the left-hand side. The free-flight time is then the sum of the inter- 
vals At,. 

(f) Polynomial Integral Evaluation 

Changing the variable of integration in (1.9) from t to k gives the following 
expression: 

-eE 
-lnr=f 

5 
k n(k’) k’ 

h ko (k’* 01 
-k2 )1,#‘=I(W) (3.18) 
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TABLE II 

Coefficients of the Integrated Polynomial (3.19) 
Related to the Coefficients of the Original Polynomial (2.1) 

and the Component of the Wavevector Perpendicular 
to the Electric Field, kol 

c,=al+2a,k~,13+8a,k~,/15 

c2 = aJ2 + 3a,k,2,/8 + 5a,k,4,/16 

c, = a,/3 + 4aski,/15 

cd = a,/4 + 5ack&/24 

c5 = a,/5 

cc = a6 /6 

CO = a, + azki,/2 + 3a,k&/8 + 5a,kg,/l6 

where e is the magnitude of the electronic charge. The sign of the integral is the 
same as that of dk/dt. This integral cannot be performed if the original formulae for 
l(k’) are substituted. If the polynomial approximation to i(k’) given in (2.1) is used 
the integration can be carried out, with the result 

-(k;-k;,)1’2 f cik~-l+~o~osh+ 1 . 
i=l 01 

(3.19) 

The polynomial coefficients of the integral, ci, depend only on the coefficients a, 
and the component of the wavevector perpendicular to the electric field, k,,. 
Expressions for them for a quintic polynomial are given in Table II. 

As was the case with piecewise-constant gamma the integrations must be carried 

+l-y 
k,a k,b k,c k 

kO1 kg k’ 

Fig. 6. Example to illustrate polynomial integral evaluation. See text for details. 
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out in stages. Here the limits of each step are defined by the range of the 
polynomial which is to be integrated. The calculation must also take into account 
the possibility of k decreasing to a minimum of k,, before increasing again. Con- 
sider, for example, the case illustrated in Fig. 6. The scattering rate has been 
represented by two polynomials-on the intervals (k,, kb) and (kb, k,.). It is desired 
to find the integral from the initial wavevector k, to k’. If k decreases from k, the 
required calculation is 

W,, k’) = 4k,, kc,,) + Nk,,, 4,) + W,, k’) (3.20) 

where each term is obtained from (3.19), with the first taking a negative sign 
because k is decreasing. The others take the positive sign. 

Suppose that it is required to solve (3.18) for the situation just described. The 
first integral term of (3.20) is evaluated. Two possible cases may then arise 
depending on the random value of the left-hand side of the equation. 

(i) Z(k,, k,,) 3 (-eE In r)/ti. In this case (3.18) has a solution for some value 
of k between k. and koi. It is not possible to extract the required k from (3.19) 
analytically so a Newton-Raphson iterative procedure is used to find the solution 
numerically. Having obtained the value of k the flight time is calculated using an 
expression of the form (3.9) 

(ii) Z(k,, k,,) < (-eE in r)/fi. In this case the solution must occur at some 
time greater than that required to reach k,,. Let the wavevector at that time be k. 

-eE 
~lnr=I(k,,k,,)+z(k,,,k) 

or 

-eE 
T In r - Z(k,, k,,) = Z(k,, , k). 

This expression has the same form as the original equation and can be solved using 
the same procedure with the appropriate substitution for the left-hand side. 
Repeated application of the same method will always result in case (i) being 
reached eventually, whereupon the solution is obtained. 

4. DISCUSSION 

In order to test the flight-time generation methods described above a simple 
theoretical model for the semiconductor silicon was constructed. It is based on the 
parameters of Rode [S]. Despite the simplifications of this model the major features 
of the real-scattering-rate function, L(k), are well represented. Since the flight-time 
choice depends directly on this rather than the rates for the individual mechanisms 
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TABLE III 

Execution Time in Microseconds for Free-Flight Generation Using 
Polynomial Approximation on the FPS AP-120B 

Field (MVjm) 

Method 0.5 1.0 2.0 4.0 6.0 

Constant gamma 
Piecewise-constant gamma 

Iterative gamma 
Constant time 

Polynomial integral evaluation 

1137 2448 3220 3037 3230 
159 150* 140* 139’ 143* 
154* 158 162 165 167 
167 171 175 178 180 
311 315 318 317 316 

Note. * denotes the fastest method in each case. 

it is expected that the measurements made here will provide a good indication of 
the timings which would be obtained with more realistic models. The same con- 
clusions should also apply for other materials with similar scattering-rate curves. 

The methods of Section 3 have all been coded in FORTRAN. Each procedure 
has been included in a subroutine which accepts the initial state of the electron and 
returns a free-flight time chosen with the required probability distribution. All these 
flights terminate with a real scatter: self-scattering is hidden within the routine. The 
subroutines have been written so that they all interface with the main program in 
the same way and are freely interchangeable. The only differences are in the flight- 
time generation methods and the way in which the scattering rates are represented. 

Table III shows the timings obtained for each method as the applied field was 
varied from 0.5 to 6.0 MV/m. In all cases the total scattering rate was represented 
by polynomial approximation. The timings were performed on an FPS AP-120B 
attached processor. 

The times for constant gamma are considerably greater than those of any other 
method. This is due to the enormous number of self-scatters which result from the 
use of a constant r that is large enough to cover a wide range of wavevectors. 
Clearly, for materials with a wide variation in scattering rate over the physically 
significant range of k the constant-gamma method is quite unsuitable. 

A considerable improvement in execution time is obtained by the use of a 
piecewise-constant gamma. This method is well suited to the polynomial represen- 
tation of scattering rates: each polynomial may have its own associated constant f 
over its range of validity. Eight different constant values were used in this case. 
Further experiments have shown that even faster times may be achieved by using 
twelve polynomials. An increase from twelve to fourteen did not produce any 
marked change. Such behaviour is expected because, although increasing the num- 
ber of sub-ranges will produce a better approximation to A(k) and reduce the num- 
ber of self-scatters, there is an overhead involved every time a particle crosses from 
one sub-range to another so there eventually comes a time when the reduction in 
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TABLE IV 

Execution Time in Microseconds for Free-Flight Generation Using Table Look-up on the FPS AP-120B 

Field (MV/m ) 

Method 
0.5 2.0 4.0 6.0 

Piecewise-constant gamma 141 136 130 128 132 
Iterative gamma 122 119 117 115* 115 
Constant time 113* 115* 116* 116 114* 
Numerical integral evaluation 116 137 189 297 

Note. * denotes the fastest method in each case. 

the number of self-scatters does not compensate for the increased overhead due to 
the new polynomial introduced to obtain it. 

The iterative-gamma method was implemented here with a multiplier of 1.1. The 
execution times measured show that it has succeeded in its aim of reducing the 
number of self-scatters. 

The same is true of the constant-time method. The time increment, tint, used in 
this procedure may be given any convenient value. Experiments have indicated that 
a value of 0.1 picoseconds results in the minimum execution time for the particular 
scattering rate used here. This is the case regardless of the electric field. It is possible 
that other scattering rates would require different time increments. 

The final method, polynomial integral eoafuation, is not particularly fast, despite 
parts of the routine having been coded in assembly language. The reason for this is 
the use of an iterative procedure to obtain the final value of wavevector at the end 
of a free flight. Each iteration requires the evaluation of a square root and an 
inverse hyperbolic cosine-both time-consuming operations. 

Table IV gives the timings for four different methods using a table of scattering 
rates. Constant gamma was not included as it was obvious that the method would 
remain uncompetitive despite the faster calculation of scattering rates obtained by 
tabulation. 

The three methods which appear in both tables, piecewise-constant gamma, 
iterative gamma, and constant time, all show an improvement in execution time 
when polynomial approximation is replaced by table look-up. This improvement is 
greater in the last two than in the case of piecewise-constant gamma. The 
explanation for this may be found in the number of times the scattering rate must 
be evaluated for each free flight: piecewise-constant gamma needs only one 
evaluation while the other methods require at least three. The latter therefore have 
most to gain from the change in scattering-rate representation. It may also be noted 
that constant time is now slightly faster than iterative gamma. 

Numerical integral eoaluation gives quite respectable times at low fields but 
becomes very slow at higher fields. This is due to the larger changes in wavevector 
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which occur over a free flight at high fields. These result in an increased number of 
terms in the numerical integration of (3.16). Since each of these terms requires the 
extraction of a square root the time taken to evaluate the integral increases substan- 
tially with the field. 

To put the speed of calculation of the AP-120B in perspective the flight time 
choice program was run on two other computers. Using the constant-time method 
with table look-up for a field of 1 MV/m gave an execution time of 115 ,usec on the 
AP-120B. The time for the corresponding problem on an IBM 360/195 mainframe 
was 54 psec, while the Prime 750 minicomputer gave a time of 524 psec. 

5. CONCLUSION 

Six different methods for the generation of flight times for use in the Monte Carlo 
simulation of semiconductors have been studied in this paper. Two of these 
methods, constant time and polynomial integral evaluation, are original and have 
arisen from a detailed consideration of the problem. It has also been shown that 
one of the existing methods, iterative gamma, is unreliable. The practicality of the 
various procedures has been demonstrated by the implementation of FORTRAN 
code to carry them out. 

When choosing which of the methods to use it is necessary to consider the com- 
puter on which the simulation is to be run. If a large amount of memory is available 
the constant-time method may be used with tabulation of scattering rates. This 
results in the minimum execution time. A polynomial representation of the scatter- 
ing rates can be used if the storage available is restricted. In this case the fastest 
method is piecewise-constant gamma. 
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